3.14.69 \(\int \frac {(b d+2 c d x)^{5/2}}{\sqrt {a+b x+c x^2}} \, dx\) [1369]

Optimal. Leaf size=231 \[ \frac {4}{5} d (b d+2 c d x)^{3/2} \sqrt {a+b x+c x^2}+\frac {6 \left (b^2-4 a c\right )^{7/4} d^{5/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{5 c \sqrt {a+b x+c x^2}}-\frac {6 \left (b^2-4 a c\right )^{7/4} d^{5/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{5 c \sqrt {a+b x+c x^2}} \]

[Out]

4/5*d*(2*c*d*x+b*d)^(3/2)*(c*x^2+b*x+a)^(1/2)+6/5*(-4*a*c+b^2)^(7/4)*d^(5/2)*EllipticE((2*c*d*x+b*d)^(1/2)/(-4
*a*c+b^2)^(1/4)/d^(1/2),I)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)/c/(c*x^2+b*x+a)^(1/2)-6/5*(-4*a*c+b^2)^(7/4)*
d^(5/2)*EllipticF((2*c*d*x+b*d)^(1/2)/(-4*a*c+b^2)^(1/4)/d^(1/2),I)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)/c/(c
*x^2+b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 231, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {706, 705, 704, 313, 227, 1213, 435} \begin {gather*} -\frac {6 d^{5/2} \left (b^2-4 a c\right )^{7/4} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\text {ArcSin}\left (\frac {\sqrt {b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{5 c \sqrt {a+b x+c x^2}}+\frac {6 d^{5/2} \left (b^2-4 a c\right )^{7/4} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\text {ArcSin}\left (\frac {\sqrt {b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{5 c \sqrt {a+b x+c x^2}}+\frac {4}{5} d \sqrt {a+b x+c x^2} (b d+2 c d x)^{3/2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(b*d + 2*c*d*x)^(5/2)/Sqrt[a + b*x + c*x^2],x]

[Out]

(4*d*(b*d + 2*c*d*x)^(3/2)*Sqrt[a + b*x + c*x^2])/5 + (6*(b^2 - 4*a*c)^(7/4)*d^(5/2)*Sqrt[-((c*(a + b*x + c*x^
2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(5*c*Sqrt[a + b*
x + c*x^2]) - (6*(b^2 - 4*a*c)^(7/4)*d^(5/2)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqr
t[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(5*c*Sqrt[a + b*x + c*x^2])

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 313

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-b/a, 2]}, Dist[-q^(-1), Int[1/Sqrt[a + b*x^4]
, x], x] + Dist[1/q, Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 704

Int[Sqrt[(d_) + (e_.)*(x_)]/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(4/e)*Sqrt[-c/(b^2 - 4*
a*c)], Subst[Int[x^2/Sqrt[Simp[1 - b^2*(x^4/(d^2*(b^2 - 4*a*c))), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 705

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[(-c)*((a + b*x +
c*x^2)/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[(-a)*(c/(b^2 - 4*a*c)) - b*c*(x/(b^2 - 4*a*
c)) - c^2*(x^2/(b^2 - 4*a*c))], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
 0] && EqQ[m^2, 1/4]

Rule 706

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[2*d*(d + e*x)^(m - 1
)*((a + b*x + c*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] + Dist[d^2*(m - 1)*((b^2 - 4*a*c)/(b^2*(m + 2*p + 1))), In
t[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[
2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] &
& RationalQ[p]) || OddQ[m])

Rule 1213

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[d/Sqrt[a], Int[Sqrt[1 + e*(x^2/d)]/Sqrt
[1 - e*(x^2/d)], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {(b d+2 c d x)^{5/2}}{\sqrt {a+b x+c x^2}} \, dx &=\frac {4}{5} d (b d+2 c d x)^{3/2} \sqrt {a+b x+c x^2}+\frac {1}{5} \left (3 \left (b^2-4 a c\right ) d^2\right ) \int \frac {\sqrt {b d+2 c d x}}{\sqrt {a+b x+c x^2}} \, dx\\ &=\frac {4}{5} d (b d+2 c d x)^{3/2} \sqrt {a+b x+c x^2}+\frac {\left (3 \left (b^2-4 a c\right ) d^2 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \int \frac {\sqrt {b d+2 c d x}}{\sqrt {-\frac {a c}{b^2-4 a c}-\frac {b c x}{b^2-4 a c}-\frac {c^2 x^2}{b^2-4 a c}}} \, dx}{5 \sqrt {a+b x+c x^2}}\\ &=\frac {4}{5} d (b d+2 c d x)^{3/2} \sqrt {a+b x+c x^2}+\frac {\left (6 \left (b^2-4 a c\right ) d \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {1-\frac {x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{5 c \sqrt {a+b x+c x^2}}\\ &=\frac {4}{5} d (b d+2 c d x)^{3/2} \sqrt {a+b x+c x^2}-\frac {\left (6 \left (b^2-4 a c\right )^{3/2} d^2 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{5 c \sqrt {a+b x+c x^2}}+\frac {\left (6 \left (b^2-4 a c\right )^{3/2} d^2 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1+\frac {x^2}{\sqrt {b^2-4 a c} d}}{\sqrt {1-\frac {x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{5 c \sqrt {a+b x+c x^2}}\\ &=\frac {4}{5} d (b d+2 c d x)^{3/2} \sqrt {a+b x+c x^2}-\frac {6 \left (b^2-4 a c\right )^{7/4} d^{5/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{5 c \sqrt {a+b x+c x^2}}+\frac {\left (6 \left (b^2-4 a c\right )^{3/2} d^2 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {x^2}{\sqrt {b^2-4 a c} d}}}{\sqrt {1-\frac {x^2}{\sqrt {b^2-4 a c} d}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{5 c \sqrt {a+b x+c x^2}}\\ &=\frac {4}{5} d (b d+2 c d x)^{3/2} \sqrt {a+b x+c x^2}+\frac {6 \left (b^2-4 a c\right )^{7/4} d^{5/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{5 c \sqrt {a+b x+c x^2}}-\frac {6 \left (b^2-4 a c\right )^{7/4} d^{5/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{5 c \sqrt {a+b x+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.09, size = 111, normalized size = 0.48 \begin {gather*} \frac {2 d (d (b+2 c x))^{3/2} \left (2 c (a+x (b+c x))+\left (b^2-4 a c\right ) \sqrt {\frac {c (a+x (b+c x))}{-b^2+4 a c}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};\frac {(b+2 c x)^2}{b^2-4 a c}\right )\right )}{5 c \sqrt {a+x (b+c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(b*d + 2*c*d*x)^(5/2)/Sqrt[a + b*x + c*x^2],x]

[Out]

(2*d*(d*(b + 2*c*x))^(3/2)*(2*c*(a + x*(b + c*x)) + (b^2 - 4*a*c)*Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)]*H
ypergeometric2F1[1/2, 3/4, 7/4, (b + 2*c*x)^2/(b^2 - 4*a*c)]))/(5*c*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(495\) vs. \(2(193)=386\).
time = 0.84, size = 496, normalized size = 2.15 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*c*d*x+b*d)^(5/2)/(c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/5*(d*(2*c*x+b))^(1/2)*(c*x^2+b*x+a)^(1/2)*d^2*(48*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(
-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((
b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a^2*c^2-24*((b+2*c*x+(-4*a*c+b^2)^(1/2)
)/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^
(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a*b^2*c+3*
((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a
*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)
*2^(1/2),2^(1/2))*b^4-16*c^4*x^4-32*b*c^3*x^3-16*x^2*c^3*a-20*b^2*c^2*x^2-16*x*a*b*c^2-4*b^3*c*x-4*a*c*b^2)/c/
(2*c^2*x^3+3*b*c*x^2+2*a*c*x+b^2*x+a*b)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(5/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((2*c*d*x + b*d)^(5/2)/sqrt(c*x^2 + b*x + a), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.40, size = 109, normalized size = 0.47 \begin {gather*} -\frac {2 \, {\left (3 \, \sqrt {2} \sqrt {c^{2} d} {\left (b^{2} - 4 \, a c\right )} d^{2} {\rm weierstrassZeta}\left (\frac {b^{2} - 4 \, a c}{c^{2}}, 0, {\rm weierstrassPInverse}\left (\frac {b^{2} - 4 \, a c}{c^{2}}, 0, \frac {2 \, c x + b}{2 \, c}\right )\right ) - 2 \, {\left (2 \, c^{2} d^{2} x + b c d^{2}\right )} \sqrt {2 \, c d x + b d} \sqrt {c x^{2} + b x + a}\right )}}{5 \, c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(5/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

-2/5*(3*sqrt(2)*sqrt(c^2*d)*(b^2 - 4*a*c)*d^2*weierstrassZeta((b^2 - 4*a*c)/c^2, 0, weierstrassPInverse((b^2 -
 4*a*c)/c^2, 0, 1/2*(2*c*x + b)/c)) - 2*(2*c^2*d^2*x + b*c*d^2)*sqrt(2*c*d*x + b*d)*sqrt(c*x^2 + b*x + a))/c

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (d \left (b + 2 c x\right )\right )^{\frac {5}{2}}}{\sqrt {a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)**(5/2)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral((d*(b + 2*c*x))**(5/2)/sqrt(a + b*x + c*x**2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(5/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

integrate((2*c*d*x + b*d)^(5/2)/sqrt(c*x^2 + b*x + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (b\,d+2\,c\,d\,x\right )}^{5/2}}{\sqrt {c\,x^2+b\,x+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*d + 2*c*d*x)^(5/2)/(a + b*x + c*x^2)^(1/2),x)

[Out]

int((b*d + 2*c*d*x)^(5/2)/(a + b*x + c*x^2)^(1/2), x)

________________________________________________________________________________________